Jose Alberto Arcos Sánchez
05 abr 2019
En los últimos meses, en BBVA Next Technologies hemos dedicado cierto esfuerzo a investigar herramientas y técnicas de interpretabilidad de modelos de aprendizaje automático (‘machine learning’). Estas técnicas son de gran utilidad para entender (o hacer entender a otros) las predicciones de un modelo, para extraer información de negocio a partir de un modelo que ha conseguido capturar los patrones subyacentes de interés, y para depurar modelos y estar seguros de que estos toman las decisiones correctas por las razones correctas.
En este artículo explicaremos cómo hemos aplicado estas técnicas para evitar poner en producción modelos fallidos que a priori eran totalmente correctos según los criterios estándar de validación.